A cyclic weight algorithm of decoding the (47, 24, 11) quadratic residue code
نویسندگان
چکیده
منابع مشابه
Decoding of the Five-Error-Correcting Binary Quadratic Residue Codes
In this paper, a new efficient syndrome-weight decoding algorithm (NESWDA) is presented to decode up to five possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main idea of NESWDA is based on the property cyclic codes together with the weight of syndrome difference. The advantage of the NESWDA decoding algorithm over the previous table look-up methods is that i...
متن کاملHigh speed decoding of the binary (47, 24, 11) quadratic residue code
An efficient table lookup decoding algorithm (TLDA) is presented to decode up to five possible errors in a binary systematic (47,24,11) quadratic residue (QR) code. The main idea of the TLDA is based on the weight of syndrome, the syndrome decoder together with a reduced-size lookup table (RSLT), and the shift-search method given by Reed et al. Thus, the size of the lookup table and computation...
متن کاملOn the decoding of the (24, 12, 8) Golay code
An improved syndrome shift-register decoding algorithm, called the syndrome-weight decoding algorithm, is proposed for decoding three possible errors and detecting four errors in the (24,12,8) Golay code. This method can also be extended to decode two other short codes, such as the (15,5,7) cyclic code and the (31,16,7) quadratic residue (QR) code. The proposed decoding algorithm makes use of t...
متن کاملAlgebraic Decoding of Quadratic Residue Codes Using Berlekamp-Massey Algorithm
In this paper, an algebraic decoding method is proposed for the quadratic residue codes that utilize the Berlekamp-Massey algorithm. By a modification of the technique developed by He et al., one can express the unknown syndromes as functions of the known syndromes. The unknown syndromes are determined by an efficient algorithm also developed in this paper. With the appearance of unknown syndro...
متن کاملDecoding the Ternary (23, 11, 9) Quadratic Residue Code
Quadratic residue (QR) codes are cyclic, nominally half-rate codes, that are powerful with respect to their error-correction capabilities. Decoding QR codes is in general a difficult task, but great progress has been made in the binary case since the work of Elia [1] and He et al. [2]. Decoding algorithms for certain nonbinary QR codes were proposed by Higgs and Humphreys in [3] and [4]. In [5]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 47 شماره
صفحات -
تاریخ انتشار 2001